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Lyapunov exponents and Kolmogorov-Sinai entropy for a high-dimensional convex billiard
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We compute the Lyapunov exponents and the Kolmogorov-SK8) entropy for a self-boundN-body
system that is realized as a convex billiard. This system exhibits truly high-dimensional chaod\ amd 2
Lyapunov exponents are found to be positive. The KS entropy increases linearly with the numbers of particles.
We examine the chaos generating defocusing mechanism and investigate how high-dimensional chaos devel-
ops in this system with no dispersing elements.

PACS numbgs): 05.45.Jn, 05.26:y, 02.70.Ns

[. INTRODUCTION the KS entropy for this chaotibl-body system. These quan-
tities characterize the degree of hyperbolic instability in dy-
Billiards are simple yet nontrivial examples of systemsnamical systems and may be related to transport coefficients
that display classically chaotic motion. Of special impor-in nonequilibrium situationgl1]. Since the studied billiard is
tance are the Sinai billiarfiL] and the Bunimovich stadium convex, defocusing is the only possible source causing this
[2] since they are known to be completely chaotic. Interestinstability [12]. This makes it interesting to examine this
ingly, these two systems exhibit two different mechanismgnechanism in more detail and compare to the situation of
that generate chaos. While dispersion is the chaos-generati§focusing billiards with spherical caps. The results of such
mechanism in the Sinai billiard it is defocusing that leads to@h investigation are not only of theoretical interest but may
chaotic dynamics in the Bunimovich stadium. Dispersing@lso be useful for further applications. We have in mind gen-
yields a permanent divergence of neighbored trajectorieral questions concerning chaos in self-bound many-body
Defocusing may occur upon reflection at a focusing boundsystems such as nuclei or atomic clusters and its influence on
ary element. Provided the free path is sufficiently long,eduilibration, damping or transport processes.
nearby trajectories start to diverge after passing through the This paper is organized as follows. In the next section we
focusing point, and on average the divergence might exceedescribe the model system and the techniques used to com-
the convergence thus leading to exponential instability. DisPute the Lyapunov exponents. Section IIl contains the results
persing billiards are well known also in higher dimensions.of our numerical computations for various system sidem
Popular examples are the three-dimensional Sinai billiardec. IV we investigate the defocusing mechanism in more
and the hard sphere gas. However, it was not until recentigetail. We finally give a summary.
that completely chaotic billiards were constructed in more
than two spatial dimensions that rely entirely on the defocus- Il. HIGH-DIMENSIONAL BILLIARD AND LYAPUNOV
ing mechanisn{3,4]. These billiards use spherical caps as EXPONENTS
the focusing elements of the boundary. A trajectory diverges Let id lassical tem I§f particl ith
mainly in a two-dimensional plane that is defined by the €l us consider a classical system Wiparticles wi
points of consecutive reflections with the spherical cap, an&-|am|lton|an
focusing may be very weak in the transversal directions. This
makes it more difficult to create truly high-dimensional H=
chaos in focusing billiards than in dispersing ones. Sufficient
conditions for the construction of high-dimensional focusing .
billiards were given in Ref[3], but it was found that these Wherer; is a two-dimensional position vector of then par-
are not necessary ongs|. ticle and p; is its conjugate momentum. The interaction is
In addition to their intrinsic interest billiards are important given by
model systems in the field of quantum ch4b$and statis-
tical and fluid mechanic$6]. Questions related to chaos, B 0 forr<a,
ergodicity, transport and equilibration are often studied v(r)= © forr=a. )
in billiard models, see, e.g.,, Refd7,8]. While two-
dimensional chaos is fairly well understood by now, muchThus, the particles move freely and interact whenever the
less is known in high-dimensional systems. Recently, a highdistance between a pair of particles reaches its maximum
dimensional billiard model has been proposed in the contextaluea. Hamiltonian(1),(2) defines a self-bound, interacting
of nuclear physic$9] and quantum chadd0]. Within this  many-body system. Energy, total momentum and total angu-
model a self-boundN-body system is realized as a convex lar momentum are conserved quantities. For large numbers
billiard. Numerical computations yielded a positive largestof particles the points of interactions are close to a circle of
Lyapunov exponent and showed that this system is predomidiametera and therefore define a rather thin surface. There-
nantly chaotic. In this article we want to extend previousfore, this system is a simple classical model for nuclei or
calculations and compute the full Lyapunov spectrum andatomic clusters. For finite values of the binding potential the
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system is amenable to a mean field descripfib3]. Hamil-
tonian(1) may also be viewed as a special case of the square
well gas[14] with infinite binding potential. However, to the
best of our knowledge, the square well gas has not been
investigated for such parameter values. In what follows we
restrict ourselves to the case of vanishing total momentum
and angular momentum.

In the limit N—co the number density diverges for the /
self-bound many-body systeifl), (2). A constant density 0oL [
may be obtained once the parameteris rescaled asa 0.0 0.25
—aN3 thus turning the Hamiltoniafl), (2) into an effec-
tive Hamiltonian. In what follows we work with a FIG. 1. Lyapunov spectra fox =10, N=30, N=100, andN
N-independent parameter Since the billiard is a scaling - 300 (bottom to top in units of (E/Nma?)¥2 The last three spec-
system one may easily rescale the results obtained below g are shifted by 0.1, 0.2, and 0.B/Nma2) Y2, respectively.
adapt for different values d.

The time evolution of a many-body system with billiard- f jndependent displacement vectors, and finite numerical pre-
like interactions requires an effo@(N In N) to be compared  ¢jsjon requires their reorthogonalization besides the rescaling
with the effort O(N?) for a generic two-body interaction during the time evolution.

[15]. Initially one computes thé&l(N—1)/2 times at which Rather than following the time evolution of finite dis-
pairs of particles may interact and organizes these in a paplacement vectors one may also use infinitesimal displace-
tially ordered binary tree, keeping the shortest time at itsments(tangent vectoisin the computation of the Lyapunov
root. Immediately after an interaction of particles labeied exponents. In tangent space the time evolution is given by a
andj one has to recomputeN2-3 times corresponding to |inear mapping. Details about the tangent map in high-
future interactions between particleandj and the remain-  dimensional billiards can be found in Refg,20].

ing ones. The insertion of each new time into the partially |n a completely chaotic system the KS entropy is given by
ordered tree requires only an effd(In N). Between con- the sum of all positive Lyapunov exponen&l], i.e., hxs

secutive interactions particles move freely. Upon an interac=sf_ 1\j . The KS entropy measures at which rate informa-
tion of particles labeled biyandj, respectively, the momenta tionj about the initial state of a system is lost.

change accordingly to

coe b '
0.5 0.75 1.0
il2N

Ill. RESULTS
5' = 5_2ﬂ( (3) In what follows we consider thé&l-body system at van-
a® ishing total momentum and angular momentum. We use

units such thaa=m=E/N=1. Times are then given in

units ofa(mN/E)Y2. We choose initial conditions at random

>, s . . di .
Here,p” andp=p;—p; are the relative momentum Vectors 5 foliow a trajectory for at least i@ollisions. This en-
immediately before and after the interaction, respectwelysures a good convergence of the numerically computed

andr= Fi—Fj is the relative position vector with magnitude |yapunov spectra.

Ir|=a at the interaction. Obviously, E¢3) describes a re- We have checked our results as follows. The time evolu-
flection in the center of mass system of the two interactingion was checked by comparing forward with backward
particles. propagation. The Lyapunov spectra were checked by com-

We now turn to the computation of the Lyapunov expo-paring the results obtained from the tangent map with those
nents. We describe the techniques used rather briefly sinceddtained by Benettin’s method involving finite displace-
large body of literature exists on the subject, see, e.g., Refsnents. The computation of all Lyapunov exponents showed
[6,16,17. A Hamiltonian system witlf degrees of freedom that A _;+\; vanishes within our numerical accuracy. We
possessekindependent Lyapunov exponenis, . .. \; or-  found four pairs of vanishing Lyapunov exponents corre-
dered such that €\;=<---<\;. Since the Hamiltonian sponding to the conserved quantities.
flow preserves phase space volume there arefalsmposi- The Lyapunov spectra for systems of sizdd
tive Lyapunov exponents with _;=—X\;. A system withn =10,30,100,300 particles are plotted in Fig. 1. We note that
integrals of motion has vanishing Lyapunov exponents the N-body system possessebl2 4 positive Lyapunov ex-
Ni=---=\,=0, while a chaotic system has a positive larg- ponents. This shows that there are no further integrals of
est Lyapunov exponent;>0. This exponeni; is the rate motion besides energy, momentum, and angular momentum,
at which neighbored trajectories diverge under the time evoand that truly high-dimensional chaos is developed. We dis-
lution. cuss this finding in detail in the following section. The

Benettinet al. [18] gave a method to compute the largestLyapunov exponenk; is a smooth function of its index with
Lyapunov exponent from following the time evolution of a a rather small smallest positive Lyapunov exponentThis
reference trajectory and a second one that is initially slightlybehavior is similar to the case of the Lennard-Jones fluid
displaced. The displacement vector has to be rescaled aftg22] or the Fermi-Pasta-Ulam modé3] but differs from the
some finite evolution in a compact phase space. To computeard sphere gas where a rather large smallest positive
the full spectrum of Lyapunov exponents one has to folfow Lyapunov exponent was founi¥]. Note that the spectra
trajectories besides the reference trajecfdg]. This defines seem to converge somehow with increasigTable | dis-
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TABLE I. Smallest and largest Lyapunov exponents, collision 20 e
rates, and KS entropy for different system sizes at fixed single
particle energyE/N=1. All quantities are given in units of i ]
(E/Nm&)Y2. L5 .
=z |
o) ki
N )\5 )\ZN T_l hKS < L 4
1.0 -
3 0.70 0.96 2.60 1.66 I ]
10 0.22 1.14 10.6 11.5 I ]
0‘5 PR | AR | MR T
30 0.083 1.33 33.1 40.2 10° 10" 102 10°
100 0.025 151 112. 141. N
300 0.008 1.65 338. 428.

FIG. 3. Maximal Lyapunov exponent,y [in units of
(E/Nm&)¥? as a function of the system si2¢
plays the largest and smallest positive Lyapunov exponents,
collision rates and the KS entropies. mechanism is of interest and presented in the following sec-
It is interesting to examine th&l dependence in more tion.
detail. Figure 2 shows that the KS entropys and the col-
lision rate 7! depend linearly on the system sige The IV. DEFOCUSING MECHANISM
case of the collision rate is easily understood since the con-
stant single particle energy keeps the collision rate of each Let us examine the defocusing mechanism in the billiard
particle with the surface constant, too. The KS entropy isconsidered in this work. We do not try to prove that the
roughly given by the area under the corresponding spectrur@onsidered system is completely chaotic—which seems dif-
presented in Fig. 1. Since the spectra converge approxficult at least—but rather want to understand the numerically
mately with increasing) this area increases linearly with the observed phenomenon of chaotic motion in more detail. To
number of particles. TheN dependence of the largest this purpose and based on our numerical results we assume
Lyapunov exponenk oy is shown in Fig. 3 and may be ap- that the system igpredominantly chaotic, and that chaos is
proximated by a logarithmicly increasing curve. In the casegenerated by the only possible mechanism, namely, defocus-
of the hard sphere gas thedependence could be understooding [12]. We may then clarify how high-dimensional chaos
for sufficiently low densities using techniques borroweddevelops and thus understand why we obsemNe-2 posi-
from kinetic theory[24]. Unfortunately, these ideas cannot tive Lyapunov exponents. This investigation may hopefully
directly be transferred to our system since the density is nggerve also as a starting point and a motivation for further
a small parameter. Note, however, that the largest Lyapunokesearch.
exponent decreases with increasiNgonce the density is For simplicity let us consider the three-body system first.
kept constant after resca“r@_)aNlB. This is interesting It is useful to study this system as a billiard in full six-
with view on nuclear physics since this result differs quali-dimensional configuration space. This is possible since the
tatively from simple billiard(mean-field models. Scaling ar- change in relative momentuf8) caused by an interaction of
guments for such models show that the largest Lyapuno@Wo particles corresponds to a specular reflection in the bil-
exponent increases witN at constant density and single- liard. We denote vectors in configuration space by capital
particle energy. letters asR=(r,r,.rs), where r;=(x;,y;) is the two-
The numerical results obtained in this work indicate thatdimensional position vector of thigh particle. The part of
the considered billiard systems exhibit truly high- the boundary where particles labelied1,2 interact may be
dimensional chaos. We recall that the system is convex angarametrized as
does not possess any dispersing elements. Furthermore, it
differs in construction from the high-dimensional focusing . . a. . a. .
billiards with spherical caps studied in Ref8,4]. Thus, a Xagp=|r+ Eea,r— Eea,r3 ,
closer examination of the chaos generating defocusing

1P ey e,=(cosa,sina). (4)

, The (outwards pointing normal vectoraa)z(lz) and the tan-
Mlo ] E . gent vectord, X 15 span the two-dimensional planes where
L i= divergence due to defocusing might be generated. These
10!k - planes come in a four-dimensional family due to the param-

3 ] etersr andr in Eq. (4). Basis vectors for these planes may
. be chosen as
1040 10°

E1=((1,0,(—1,0,(0,0)/\2,

FIG. 2. KS entropyhgk (triangles and collision rate X .
(circles in units of (E/Nma)*? as a function of system siz¥é. E,=((0,1),(0,—1),(0,0)/2. (5)



1340 THOMAS PAPENBROCK PRE 61

Similar arguments show that there are two further planesonstruction differs from the one investigated by Bunimov-
where defocusing might be generated corresponding to inteieh et al.[3,4]. The neutral behavior in the transverse direc-
actions between particles (1,3) and (2,3), respectivelytions has the advantage that it avoids the problems caused by

These planes are spanned by the basis vectors the weak convergence occurring in the transversal directions
_ upon reflections from higher-dimensional spherical caps. It
Es=((1,0,(0,0),(—1,0)/v2, has the disadvantage that several focusing elements are
R needed to produce high-dimensional chaos while a single
E,=((0,1),(0,0),(0,—1))/\/2 (6)  spherical cap may be sufficient.

and V. CONCLUSIONS
Es=((0,0,(1,0),(—1,0)//2, We have computed the Lyapunov spectrum and the KS

entropy for an interacting\-body system in two spatial di-
é6:((0 0,(0,1),(0 _1))/\/5 (7) mensions which is realized as a convex billiard in

2N-dimensional configuration space. In presence of four

respectively. Four of the six basis vectdEs are linearly ~conserved quantiies we find the maximal number &f 2
independent. The vector&=((1,0),(1,0),(1,0) and Y —_4 positive _Lyapunov exponents. 'I_'hus, the system exhibits
—((0.1),(0,1),(0,1) correspond to displacements of the high-dimensional chaos. At fixed single particle energy the

N o largest Lyapunov exponent grows with Nnwhile the KS
center of mass and are orthogonal to the vedirsThis IS aniropy grows and the collision rate increases linearly with
expected since the center of mass moves freely. Itis IMPOIy |y an attempt to understand the chaotic nature of the bil-

tant to note that the boundary is neutfia., neither focusing  jiarg we have identified several symmetry related two-
nor dispersingin the transverse directions. _ _ dimensional planes where defocusing might be generated.
It is straightforward to generalize these considerations t@rhejr number and orientation in configuration space is such
N bodies. In the case of the-body billiard there areN(N  {hat 4 long trajectory may exhibit divergence iN24 di-
—1)/2 families of two-dimensional planes where defocusingections of phase space. This mechanism of focusing differs
might possibly occur. These families are related by thosgrom the one proposed recently by Bunimovich and Rehacek.
permutations that involve two out & particles, |.e.,etrans- Let us finally comment on chaos in realistic many-body
positions. 2N —1) out of theN(N—1) basis vectorg; are  systems. Though the considered model is a crude approxima-
linearly independent. The two vectors corresponding to theion of realistic self-bound many-body systems such as nu-
displacement of the center of mass are orthogonal to thelei or clusters, it incorporates the important ingredient of an
vectorsE; . attractive two-body interaction that acts mainly at the surface
It would be interesting to relate the number of positive of the system. This is the basic picture we have for nuclei
Lyapunov exponents and the number of linearly independerand clusters, where the complicated two-body force creates a
basis vector€; . Clearly, the former cannot exceed the lat- rather flat mean-field potential, and particles experience

ter. Assume that defocusing causes divergence in the direfinly a surface interaction. However, unlike in the model
. . . = system, an interaction at the nuclear surface involves more
tions of all linearly independeni;. Then there would be

exactly 2(N—1) positive Lyapunov exponents. However, than just two nucleons, and the two-dimensional planes

the conservation of energy and angular momentum puts tWwhere defocusing is generated in the model system are re-
additional constraints, and\2-4 is the number of positive BIaced by some higher-dimensional ones. This might also

Lvapunov exponents. This reasoning is consistent with thintroduce the problem caused by weak focusing in transverse
yapur P ' . g 2 ) Qirections. It is fair to assume that truly high-dimensional
numerical results presented in the previous section.

. . . chaos may develop upon several collisions with the surface.
The following picture thus arises. The boundary of theThough the detailed analysis seems much more complicated

billiard considered in this work consists of several equivalemthan in the studied model system, the basic picture developed
elements each of which cause a reflected trajectory to di- '

verge only in a two-dimensional plane. The orientation of In this work shoulql I_Je applicable. to some extent also in the
. . . - case of more realistic two-body interactions.

this plane is determined by the reflecting boundary element:

In transverse directions the reflection is neutral, i.e., neither

focusing nor dispersing. A trajectory that gets reflected from

sufficiently many different boundary elements may exhibit This work was supported by the Department of Energy

divergence in all directions. It is interesting to note that thisunder Grant No. DE-FG-06-90ER40561.
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