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Lyapunov exponents and Kolmogorov-Sinai entropy for a high-dimensional convex billiard

Thomas Papenbrock
Institute for Nuclear Theory, Department of Physics, University of Washington, Seattle, Washington 98195

~Received 10 September 1999!

We compute the Lyapunov exponents and the Kolmogorov-Sinai~KS! entropy for a self-boundN-body
system that is realized as a convex billiard. This system exhibits truly high-dimensional chaos, and 2N24
Lyapunov exponents are found to be positive. The KS entropy increases linearly with the numbers of particles.
We examine the chaos generating defocusing mechanism and investigate how high-dimensional chaos devel-
ops in this system with no dispersing elements.

PACS number~s!: 05.45.Jn, 05.20.2y, 02.70.Ns
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I. INTRODUCTION

Billiards are simple yet nontrivial examples of system
that display classically chaotic motion. Of special impo
tance are the Sinai billiard@1# and the Bunimovich stadium
@2# since they are known to be completely chaotic. Intere
ingly, these two systems exhibit two different mechanis
that generate chaos. While dispersion is the chaos-gener
mechanism in the Sinai billiard it is defocusing that leads
chaotic dynamics in the Bunimovich stadium. Dispersi
yields a permanent divergence of neighbored trajector
Defocusing may occur upon reflection at a focusing bou
ary element. Provided the free path is sufficiently lon
nearby trajectories start to diverge after passing through
focusing point, and on average the divergence might exc
the convergence thus leading to exponential instability. D
persing billiards are well known also in higher dimension
Popular examples are the three-dimensional Sinai billi
and the hard sphere gas. However, it was not until rece
that completely chaotic billiards were constructed in mo
than two spatial dimensions that rely entirely on the defoc
ing mechanism@3,4#. These billiards use spherical caps
the focusing elements of the boundary. A trajectory diver
mainly in a two-dimensional plane that is defined by t
points of consecutive reflections with the spherical cap,
focusing may be very weak in the transversal directions. T
makes it more difficult to create truly high-dimension
chaos in focusing billiards than in dispersing ones. Suffici
conditions for the construction of high-dimensional focusi
billiards were given in Ref.@3#, but it was found that these
are not necessary ones@4#.

In addition to their intrinsic interest billiards are importa
model systems in the field of quantum chaos@5# and statis-
tical and fluid mechanics@6#. Questions related to chao
ergodicity, transport and equilibration are often stud
in billiard models, see, e.g., Refs.@7,8#. While two-
dimensional chaos is fairly well understood by now, mu
less is known in high-dimensional systems. Recently, a h
dimensional billiard model has been proposed in the con
of nuclear physics@9# and quantum chaos@10#. Within this
model a self-boundN-body system is realized as a conv
billiard. Numerical computations yielded a positive large
Lyapunov exponent and showed that this system is predo
nantly chaotic. In this article we want to extend previo
calculations and compute the full Lyapunov spectrum a
PRE 611063-651X/2000/61~2!/1337~5!/$15.00
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the KS entropy for this chaoticN-body system. These quan
tities characterize the degree of hyperbolic instability in d
namical systems and may be related to transport coeffici
in nonequilibrium situations@11#. Since the studied billiard is
convex, defocusing is the only possible source causing
instability @12#. This makes it interesting to examine th
mechanism in more detail and compare to the situation
defocusing billiards with spherical caps. The results of su
an investigation are not only of theoretical interest but m
also be useful for further applications. We have in mind ge
eral questions concerning chaos in self-bound many-b
systems such as nuclei or atomic clusters and its influenc
equilibration, damping or transport processes.

This paper is organized as follows. In the next section
describe the model system and the techniques used to c
pute the Lyapunov exponents. Section III contains the res
of our numerical computations for various system sizesN. In
Sec. IV we investigate the defocusing mechanism in m
detail. We finally give a summary.

II. HIGH-DIMENSIONAL BILLIARD AND LYAPUNOV
EXPONENTS

Let us consider a classical system ofN particles with
Hamiltonian

H5(
i 51

N pi
2

2m
1(

i , j
V~ urW i2rW j u!, ~1!

whererW i is a two-dimensional position vector of thei th par-
ticle and pW i is its conjugate momentum. The interaction
given by

V~r !5H 0 for r ,a,

` for r>a.
~2!

Thus, the particles move freely and interact whenever
distance between a pair of particles reaches its maxim
valuea. Hamiltonian~1!,~2! defines a self-bound, interactin
many-body system. Energy, total momentum and total an
lar momentum are conserved quantities. For large numb
of particles the points of interactions are close to a circle
diametera and therefore define a rather thin surface. The
fore, this system is a simple classical model for nuclei
atomic clusters. For finite values of the binding potential t
1337 ©2000 The American Physical Society
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1338 PRE 61THOMAS PAPENBROCK
system is amenable to a mean field description@13#. Hamil-
tonian~1! may also be viewed as a special case of the squ
well gas@14# with infinite binding potential. However, to th
best of our knowledge, the square well gas has not b
investigated for such parameter values. In what follows
restrict ourselves to the case of vanishing total momen
and angular momentum.

In the limit N→` the number density diverges for th
self-bound many-body system~1!, ~2!. A constant density
may be obtained once the parametera is rescaled asa
→aN1/3, thus turning the Hamiltonian~1!, ~2! into an effec-
tive Hamiltonian. In what follows we work with a
N-independent parametera. Since the billiard is a scaling
system one may easily rescale the results obtained belo
adapt for different values ofa.

The time evolution of a many-body system with billiar
like interactions requires an effortO(N ln N) to be compared
with the effort O(N2) for a generic two-body interaction
@15#. Initially one computes theN(N21)/2 times at which
pairs of particles may interact and organizes these in a
tially ordered binary tree, keeping the shortest time at
root. Immediately after an interaction of particles labelei
and j one has to recompute 2N23 times corresponding to
future interactions between particlesi and j and the remain-
ing ones. The insertion of each new time into the partia
ordered tree requires only an effortO(ln N). Between con-
secutive interactions particles move freely. Upon an inter
tion of particles labeled byi andj, respectively, the moment
change accordingly to

pW 85pW 22
pW •rW

a2
rW. ~3!

Here,pW 8 and pW [pW i2pW j are the relative momentum vecto
immediately before and after the interaction, respective
and rW[rW i2rW j is the relative position vector with magnitud
urWu5a at the interaction. Obviously, Eq.~3! describes a re-
flection in the center of mass system of the two interact
particles.

We now turn to the computation of the Lyapunov exp
nents. We describe the techniques used rather briefly sin
large body of literature exists on the subject, see, e.g., R
@6,16,17#. A Hamiltonian system withf degrees of freedom
possessesf independent Lyapunov exponentsl1 , . . . ,l f or-
dered such that 0<l1<•••<l f . Since the Hamiltonian
flow preserves phase space volume there are alsof nonposi-
tive Lyapunov exponents withl2 j52l j . A system withn
integrals of motion hasn vanishing Lyapunov exponent
l15•••5ln50, while a chaotic system has a positive lar
est Lyapunov exponentl f.0. This exponentl f is the rate
at which neighbored trajectories diverge under the time e
lution.

Benettinet al. @18# gave a method to compute the large
Lyapunov exponent from following the time evolution of
reference trajectory and a second one that is initially sligh
displaced. The displacement vector has to be rescaled
some finite evolution in a compact phase space. To com
the full spectrum of Lyapunov exponents one has to follof
trajectories besides the reference trajectory@19#. This defines
re
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f independent displacement vectors, and finite numerical
cision requires their reorthogonalization besides the resca
during the time evolution.

Rather than following the time evolution of finite dis
placement vectors one may also use infinitesimal displa
ments~tangent vectors! in the computation of the Lyapuno
exponents. In tangent space the time evolution is given b
linear mapping. Details about the tangent map in hig
dimensional billiards can be found in Refs.@7,20#.

In a completely chaotic system the KS entropy is given
the sum of all positive Lyapunov exponents@21#, i.e., hKS

5( j 51
f l j . The KS entropy measures at which rate inform

tion about the initial state of a system is lost.

III. RESULTS

In what follows we consider theN-body system at van-
ishing total momentum and angular momentum. We u
units such thata5m5E/N51. Times are then given in
units ofa(mN/E)1/2. We choose initial conditions at random
and follow a trajectory for at least 106 collisions. This en-
sures a good convergence of the numerically compu
Lyapunov spectra.

We have checked our results as follows. The time evo
tion was checked by comparing forward with backwa
propagation. The Lyapunov spectra were checked by c
paring the results obtained from the tangent map with th
obtained by Benettin’s method involving finite displac
ments. The computation of all Lyapunov exponents show
that l2 j1l j vanishes within our numerical accuracy. W
found four pairs of vanishing Lyapunov exponents cor
sponding to the conserved quantities.

The Lyapunov spectra for systems of sizesN
510,30,100,300 particles are plotted in Fig. 1. We note t
the N-body system possesses 2N24 positive Lyapunov ex-
ponents. This shows that there are no further integrals
motion besides energy, momentum, and angular momen
and that truly high-dimensional chaos is developed. We d
cuss this finding in detail in the following section. Th
Lyapunov exponentl i is a smooth function of its index with
a rather small smallest positive Lyapunov exponentl5. This
behavior is similar to the case of the Lennard-Jones fl
@22# or the Fermi-Pasta-Ulam model@23# but differs from the
hard sphere gas where a rather large smallest pos
Lyapunov exponent was found@7#. Note that the spectra
seem to converge somehow with increasingN. Table I dis-

FIG. 1. Lyapunov spectra forN510, N530, N5100, andN
5300 ~bottom to top! in units of (E/Nma2)1/2. The last three spec
tra are shifted by 0.1, 0.2, and 0.3 (E/Nma2)1/2, respectively.
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plays the largest and smallest positive Lyapunov expone
collision rates and the KS entropies.

It is interesting to examine theN dependence in more
detail. Figure 2 shows that the KS entropyhKS and the col-
lision rate t21 depend linearly on the system sizeN. The
case of the collision rate is easily understood since the c
stant single particle energy keeps the collision rate of e
particle with the surface constant, too. The KS entropy
roughly given by the area under the corresponding spect
presented in Fig. 1. Since the spectra converge appr
mately with increasingN this area increases linearly with th
number of particles. TheN dependence of the large
Lyapunov exponentl2N is shown in Fig. 3 and may be ap
proximated by a logarithmicly increasing curve. In the ca
of the hard sphere gas theN dependence could be understo
for sufficiently low densities using techniques borrow
from kinetic theory@24#. Unfortunately, these ideas cann
directly be transferred to our system since the density is
a small parameter. Note, however, that the largest Lyapu
exponent decreases with increasingN once the density is
kept constant after rescalinga→aN1/3. This is interesting
with view on nuclear physics since this result differs qua
tatively from simple billiard~mean-field! models. Scaling ar-
guments for such models show that the largest Lyapu
exponent increases withN at constant density and single
particle energy.

The numerical results obtained in this work indicate th
the considered billiard systems exhibit truly hig
dimensional chaos. We recall that the system is convex
does not possess any dispersing elements. Furthermo
differs in construction from the high-dimensional focusi
billiards with spherical caps studied in Refs.@3,4#. Thus, a
closer examination of the chaos generating defocus

TABLE I. Smallest and largest Lyapunov exponents, collisi
rates, and KS entropy for different system sizes at fixed sin
particle energyE/N51. All quantities are given in units o
(E/Nma2)1/2.

N l5 l2N t21 hKS

3 0.70 0.96 2.60 1.66
10 0.22 1.14 10.6 11.5
30 0.083 1.33 33.1 40.2

100 0.025 1.51 112. 141.
300 0.008 1.65 338. 428.

FIG. 2. KS entropyhSK ~triangles! and collision rate 1/t
~circles! in units of (E/Nma2)1/2 as a function of system sizeN.
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mechanism is of interest and presented in the following s
tion.

IV. DEFOCUSING MECHANISM

Let us examine the defocusing mechanism in the billia
considered in this work. We do not try to prove that t
considered system is completely chaotic—which seems
ficult at least—but rather want to understand the numeric
observed phenomenon of chaotic motion in more detail.
this purpose and based on our numerical results we ass
that the system is~predominantly! chaotic, and that chaos i
generated by the only possible mechanism, namely, defo
ing @12#. We may then clarify how high-dimensional chao
develops and thus understand why we observe 2N24 posi-
tive Lyapunov exponents. This investigation may hopefu
serve also as a starting point and a motivation for furt
research.

For simplicity let us consider the three-body system fir
It is useful to study this system as a billiard in full six
dimensional configuration space. This is possible since
change in relative momentum~3! caused by an interaction o
two particles corresponds to a specular reflection in the
liard. We denote vectors in configuration space by cap
letters asRW 5(rW1 ,rW2 ,rW3), where rW i5(xi ,yi) is the two-
dimensional position vector of thei th particle. The part of
the boundary where particles labeledi 51,2 interact may be
parametrized as

XW (12)5S rW1
a

2
eWa ,rW2

a

2
eWa ,rW3D ,

eWa5~cosa,sina!. ~4!

The ~outwards pointing! normal vector]aXW (12) and the tan-
gent vector]aXW (12) span the two-dimensional planes whe
divergence due to defocusing might be generated. Th
planes come in a four-dimensional family due to the para
etersrW andrW3 in Eq. ~4!. Basis vectors for these planes ma
be chosen as

EW 15„~1,0!,~21,0!,~0,0!…/A2,

EW 25„~0,1!,~0,21!,~0,0!…/A2. ~5!

FIG. 3. Maximal Lyapunov exponentl2N @in units of
(E/Nma2)1/2] as a function of the system sizeN.
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1340 PRE 61THOMAS PAPENBROCK
Similar arguments show that there are two further pla
where defocusing might be generated corresponding to in
actions between particles (1,3) and (2,3), respectiv
These planes are spanned by the basis vectors

EW 35„~1,0!,~0,0!,~21,0!…/A2,

EW 45„~0,1!,~0,0!,~0,21!…/A2 ~6!

and

EW 55„~0,0!,~1,0!,~21,0!…/A2,

EW 65„~0,0!,~0,1!,~0,21!…/A2, ~7!

respectively. Four of the six basis vectorsEW i are linearly
independent. The vectorsXW 5„(1,0),(1,0),(1,0)… and YW
5„(0,1),(0,1),(0,1)… correspond to displacements of th
center of mass and are orthogonal to the vectorsEW i . This is
expected since the center of mass moves freely. It is imp
tant to note that the boundary is neutral~i.e., neither focusing
nor dispersing! in the transverse directions.

It is straightforward to generalize these considerations
N bodies. In the case of theN-body billiard there areN(N
21)/2 families of two-dimensional planes where defocus
might possibly occur. These families are related by th
permutations that involve two out ofN particles, i.e., trans-
positions. 2(N21) out of theN(N21) basis vectorsEW i are
linearly independent. The two vectors corresponding to
displacement of the center of mass are orthogonal to
vectorsEW i .

It would be interesting to relate the number of positi
Lyapunov exponents and the number of linearly independ
basis vectorsEW i . Clearly, the former cannot exceed the la
ter. Assume that defocusing causes divergence in the d
tions of all linearly independentEW i . Then there would be
exactly 2(N21) positive Lyapunov exponents. Howeve
the conservation of energy and angular momentum puts
additional constraints, and 2N24 is the number of positive
Lyapunov exponents. This reasoning is consistent with
numerical results presented in the previous section.

The following picture thus arises. The boundary of t
billiard considered in this work consists of several equival
elements each of which cause a reflected trajectory to
verge only in a two-dimensional plane. The orientation
this plane is determined by the reflecting boundary elem
In transverse directions the reflection is neutral, i.e., neit
focusing nor dispersing. A trajectory that gets reflected fr
sufficiently many different boundary elements may exhi
divergence in all directions. It is interesting to note that t
s
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construction differs from the one investigated by Bunimo
ich et al. @3,4#. The neutral behavior in the transverse dire
tions has the advantage that it avoids the problems cause
the weak convergence occurring in the transversal direct
upon reflections from higher-dimensional spherical caps
has the disadvantage that several focusing elements
needed to produce high-dimensional chaos while a sin
spherical cap may be sufficient.

V. CONCLUSIONS

We have computed the Lyapunov spectrum and the
entropy for an interactingN-body system in two spatial di
mensions which is realized as a convex billiard
2N-dimensional configuration space. In presence of fo
conserved quantities we find the maximal number of 2N
24 positive Lyapunov exponents. Thus, the system exhi
high-dimensional chaos. At fixed single particle energy
largest Lyapunov exponent grows with lnN while the KS
entropy grows and the collision rate increases linearly w
N. In an attempt to understand the chaotic nature of the
liard we have identified several symmetry related tw
dimensional planes where defocusing might be genera
Their number and orientation in configuration space is s
that a long trajectory may exhibit divergence in 2N24 di-
rections of phase space. This mechanism of focusing dif
from the one proposed recently by Bunimovich and Rehac

Let us finally comment on chaos in realistic many-bo
systems. Though the considered model is a crude approx
tion of realistic self-bound many-body systems such as
clei or clusters, it incorporates the important ingredient of
attractive two-body interaction that acts mainly at the surfa
of the system. This is the basic picture we have for nuc
and clusters, where the complicated two-body force creat
rather flat mean-field potential, and particles experien
mainly a surface interaction. However, unlike in the mod
system, an interaction at the nuclear surface involves m
than just two nucleons, and the two-dimensional plan
where defocusing is generated in the model system are
placed by some higher-dimensional ones. This might a
introduce the problem caused by weak focusing in transve
directions. It is fair to assume that truly high-dimension
chaos may develop upon several collisions with the surfa
Though the detailed analysis seems much more complic
than in the studied model system, the basic picture develo
in this work should be applicable to some extent also in
case of more realistic two-body interactions.
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